Search results for "FERMI DYAD"

showing 4 items of 4 documents

Stimulated Raman-Spectroscopy of the Q-Branch of Nitrogen at High Pressure - Collisional Narrowing and Shifting in the 150-6800 Bar Range at Room Tem…

1992

0026-8976; The Raman Q branch of N2 has been recorded at room temperature in the pressure range 150-6800 bar, which corresponds to densities from 135 to 800 amagat. In this domain, the Raman Q branch profile is mainly determined by the well-known collisional narrowing. The experimental data have been obtained by means of a high resolution stimulated Raman spectrometer. The linewidth and line shift of the band have been accurately measured as functions of the density, and their density dependences have been fitted by polynomials. The minimum of the linewidth and the maximum of the red shift have been clearly observed at respectively 735.8 and 532.3 amagat. The lineshape was found to be Loren…

GASEOUS N2ROTATIONALLY INELASTIC RATESTHEORETICAL-ANALYSISCARS SPECTRACO2 GASNU-1/2-NU-2 FERMI DYADLIQUID-NITROGENVIBRATIONAL-RELAXATIONSCATTERING SPECTRABAND SHAPES
researchProduct

Line mixing in the ν1 and 2ν2 isotropic Raman Q-branch of CO2 perturbed by argon and helium

1999

0021-9606; The shapes of the ν1 and 2ν2 isotropic Raman Q-branch of CO2 perturbed by argon and helium have been measured by Stimulated Raman Spectroscopy (SRS) or coherent anti-Stokes Raman Spectroscopy (CARS) techniques. The data have been successfully analyzed with an energy corrected sudden (ECS) approximation model based on basic rates determined independently. Finally comparison of the present data with time resolved double resonance experiments allows us to discuss the physical origin of the two empirical constants which account for the shift and broadening of the branch due to vibrational effects. (C) 1999 American Institute of Physics. [S0021-9606(99)00344-X].

INFRARED-SPECTRA1000SPECTROSCOPYGASFERMI DYADDOUBLE-RESONANCE EXPERIMENTSROTATIONAL ENERGY-TRANSFERVIBRATIONAL-RELAXATIONPRESSURENU-1/2-NU-2BAND SHAPESBAR
researchProduct

Vibrational and rotational collisional relaxation in CO2–Ar and CO2–He mixtures studied by stimulated Raman-infrared double resonance

1999

0021-9606; The collisional relaxation among vibrational levels of the Fermi dyad of CO2 mixed with Ar and He (10% CO2, 90% rare gas) has been studied at room temperature with a double resonance experiment. Stimulated Raman effect from the ground state achieved the pumping process with a Nd:YAG laser and a pulse amplified dye laser. After pumping the v(1) or 2v(2)(Sigma(+)g) level, a cw CO2 laser was used to probe either the depopulation rates of the pumped levels (vibrationally or rotationally resolved) or the energy transfer rates to neighboring states. The vibrational energy relaxation has been studied from experimental depopulation of v(1) and population of 2v(2) levels through a five-le…

PopulationPhysics::OpticsGeneral Physics and Astronomy02 engineering and technologyPRESSURETUNABLE01 natural sciences7. Clean energysymbols.namesake0103 physical sciencesVibrational energy relaxationDIODE-LASERPhysical and Theoretical ChemistrySMALL POLYATOMIC-MOLECULESeducationeducation.field_of_studySPECTROSCOPYDye laser010304 chemical physicsChemistryFERMI DYADRelaxation (NMR)Resonance021001 nanoscience & nanotechnologyACETYLENE GASSTATERotational energysymbolsULTRAVIOLET DOUBLE-RESONANCEFermi resonanceAtomic physicsENERGY-TRANSFER0210 nano-technologyQUANTUMRaman scatteringThe Journal of Chemical Physics
researchProduct

Determination of Temperature by Stimulated Raman Scattering of Molecular Nitrogen, Oxygen, and Carbon-Dioxide

1993

0721-7269; We have determined the temperature from SRS spectra of N2-N2, N2-CO2, O2-O2, and CO2-CO2 recorded in wide pressure and temperature ranges. The fitting procedure takes simultaneously into account the Dicke effect and motional narrowing. We have quantified the accuracy of the MEG and ECS-P models for rotational relaxation. The temperature extracted from each model is compared with thermocouple measurements. The influence of vibrational broadening and shifting is discussed in detail.

SPECTROSCOPYCO2 GASNU-1/2-NU-2 FERMI DYADSPECTRARELAXATIONROTATIONALQ-BRANCHBAND SHAPESN-2ENERGY-TRANSFER RATESLAWS
researchProduct